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ABSTRACT

Background: Monosodium Glutamate (MSG) is a flavour intensifier extensively used in the food industry;
however, compelling scientific evidence has linked MSG to neurotoxicity.

The present study aimed to investigate whether camel milk (CM) could suppress neurotoxicity caused by
MSG in Wistar rats.

Methods: Rats were grouped randomly (n=6 rats) into control, MSG (6 g/kg/day), MSG+CM (5 ml/kg/day
after 15 minutes of MSG), and Recovery (MSG for the first 21 days, then left for another 21 days without

* Corresponding author: any administration). All administrations were done orally for 21 consecutive days.

Timilehin Micheal Oni

Ado-Ekiti, PMB, Ekiti State, Nigeria Results: Exposure to MSG led to a drastic reduction in brain and body weight. It markedly reduced the

activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), and the levels of
glutathione (GSH) in the brain. In contrast, pro-inflammatory cytokines, such as Interleukin-1f8 (IL-1B),
Tumour Necrosis Factor-a (TNF-a), Myeloperoxidase, Nitric oxide (NO), and C-reactive protein (CRP),
Nuclear factor kappa B (NF-«b), caspase-3, and lipid peroxidation, as demonstrated by the MDA level,
were prominently increased. The brain functional marker acetylcholinesterase was significantly
upregulated, and dopamine activity was prominently reduced. In contrast, CM supplementation attenuated
the weight and biochemical changes.
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Conclusion: Camel milk supplementation demonstrates a therapeutic effect by alleviating MSG- induced
neurotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. The findings suggest
that CM can be a potent dietary strategy to mitigate the neurotoxic side effects of MSG.

Keywords: Camel milk (CM), Inflammation, Monosodium glutamate (MSG), Neurotoxicity, Oxidative
stress

Introduction

The ability of chemical, physical, or biological agents to
produce adverse effects on the structural or functional parts
of the central and peripheral nervous systems is referred to
as neurotoxicity [1]. Neurotoxicity can lead to the disruption
or death of neurons, which are the cells responsible for
transmitting and processing signals throughout the nervous
system. It is the primary contributor to neurodegenerative
diseases such as Huntington's, Parkinson's, and Alzheimer's
diseases [2]. Neurotoxicity can lead to the onset of
neurocognitive impairments, ataxia, incontinence, loss of
vision, behavioural problems, sexual dysfunction, etc [3].

Neurotoxicity can occur due to exposure to substances
utilised in chemotherapy, medication treatments, and organ
transplants, as well as toxic elements, such as mercury and
lead, specific food items and food additives, pesticides, etc
[4]. Monosodium glutamate (MSG), sodium glutamate,
extensively used as a food additive, has been implicated to

have neurotoxic effects [5,6].

The MSG, composed of approximately 87.72%
glutamate, is recognised as a significant contributor to
neurotoxic effects [6,7]. Excessive glutamate in the
extracellular space leads to neuronal death in the CNS by
excessively stimulating glutamate receptors, a condition
known as excitotoxicity [7,8].

The overexcitation of N-methyl-D-aspartate (NMDA)
receptors results in an influx of calcium, which stimulates
nitric oxide (NO) synthase, glyceraldehyde 3-phosphate
dehydrogenase, and cysteine proteases, causing
mitochondrial injury and leading to massive energy failure
[9,10]. Moreover, the overactivation of the glutamatergic
receptors increases the intracellular zinc level, which causes
glycolytic dysfunction by interfering with the mitochondrial
electron transport chain, inhibiting the citric acid cycle, and
increasing the levels of reactive oxygen species [10].
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These procedures ultimately result in the death of neurons.
Reports suggest that high levels of MSG consumption can
result in cognitive decline by increasing the levels of
acetylcholinesterase and decreasing dopamine levels
[11,12]. Unfortunately, there is currently an unmet need to
mitigate the neurotoxic side effects of MSG; therefore,
finding an effective treatment that can be integrated into a
diet to abrogate this effect is crucial.

Camel milk (CM) is colloquially regarded as the 'white
gold of the desert' due to its rich nutritional profile [13]. Itisa
highly nutritional milk rich in lactoferrins, lysozymes,
minerals, proteins, vitamins, and immunoglobulins with
lower fat and lactose content [14]. Furthermore, various
studies have associated CM with the possible treatment of
some pathophysiological disorders, including diabetes,
autism, cancer, dropsy, asthma, anaemia, infections, and
colitis [15,16]. However, the application of CM to abolish
neurotoxicity is predominantly uninvestigated. Therefore,
the present study explores the potential therapeutic impact of
CM on neurotoxicity triggered by MSG.

Materials and Methods
Drugs and chemicals

The MSG used in this research was obtained from Sigma
Chemical in St. Louis, MO, USA. The CM was procured
from the Camel Research Institute, King Faisal (Al-Ahsa,
Saudi Arabia). All chemicals and drugs used for this study
were obtained from reputable companies and were of the
highest analytical-grade standards.

Animals

A total of 24 male Wistar rats, weighing 185 and 205
grams, were obtained from an accredited farm house in
Nigeria. The rats were then kept in standard cages that
provided good environmental conditions. They received a
nutritional regimen of standard rat pellets (Tripod Feed
Limited, Nigeria) and water ad libitum. The Ethical Review
Board of the Physiology Department approved the research
protocol issued on 10 January 2024, under the Ethical
Approval Number EKSU/P100/2024/01/002. The globally
recognised guidelines for the care and use of laboratory
animals, established by the Canadian Council on Animal
Care and the Guidelines for Protocol Review (NRC, 1997),
were strictly followed. The experiment was also in
accordance with the guidelines provided by the National
Institutes of Health regarding the care and use of laboratory
animals.

MSG preparation

In this research, a dosage of 6 g/kg body weight (bw) of
MSG was administered [17]. A stock solution was prepared
by dissolving 22.0 g of MSG in 1 mL of distilled water.
Resulting in a concentration of 600 mg/ml.

Experimental design

Following a two-week acclimatisation period, the

animals were randomly assigned to four groups. (n=6
rats each), structured as follows:

Group A (Control): Distilled water (1 ml/kg bw, orally)
was administered for 21 days Group B (MSG Control):
MSG 6 g/kg bw for 21 days, administered orally

Group C (MSG+CM): Received CM (5 mlkg bw,
orally) 15 minutes after MSG administration Group D
(Recovery): MSG was administered for the first 21 days,
then left for another 21 days without any administration.

All rats fasted 12 hours overnight were weighed and
euthanised using ketamine (40 mg/kg)/xylazine (4 mg/kg)
injected intraperitoneally 24 hours after the last
administration (day 23). The brain was extracted,
weighed, and documented. Post-weighing, the brain was
precisely bisected into two equal hemispheres [18]. A
portion of the brain tissue was homogenised in a cold
phosphate-buffered solution (1:5) wusing a glass
homogeniser, followed by centrifugation at 10,000xg, 4°C
for 15 minutes to separate the supernatant from the
solution. Both portions were preserved at -20°C for
subsequent biochemical assays of oxidative and
inflammatory markers. The other brain portions were
fixed sufficiently with 10% neutral buffer formalin and
preserved at ambient temperature for histopathological
evaluation.

Determination of Lipid peroxidation, GSH, antioxidant
activities, and Analysis of the Brain Inflammatory
Markers

Lipid peroxidation was determined and expressed as the
Malondialdehyde (MDA) level using the MDA ELISA kit
(Bioassay Tech, China) following the manufacturer's
instructions. MDA level was reported in micromoles per
gram of tissue (LM/g protein).

The concentrations of Superoxide dismutase (SOD),
Glutathione peroxidase (GPx), Glutathione S- S-
transferase (GST), and Catalase were assessed using their
respective rat ELISA kits (MyBioSource, Inc., US). It was
reported in units per milligram of protein (U/mg protein).
The glutathione (GSH) concentration was evaluated using
the procedure described by Sedlak and Lindsay [19].

The Inflammatory  markers  (TNFa, IL-1B,
Myeloperoxidase, CRP, and NF-kB) were assessed
utilising the enzyme-linked immunosorbent assay
(ELISA) technique with a standard commercial kit for rats
(MyBioSource, Inc., US) according to the producer’s
guide. Moreover, NO levels were evaluated utilising a
commercial kit which contains Griess reagents (R&D
Systems, USA) based on the approach outlined by Griess
et al [20]. Determination of the acetylcholine esterase and
dopamine levels

The activity of the enzyme Acetylcholine Esterase
(AChE) was analysed using rat ELISA kits from Shanghai
Sunred  Technology = Company, following the
manufacturer's instructions. Dopamine levels were
determined using the ELISA kits supplied by USCN Life
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Inc., Wuhan, China, according to the producer’s guidelines.
Evaluation of Caspase-3 activity

The eluate formed from the homogenisation and
centrifugation of brain samples was utilised for the ELISA
technique to measure caspase-3 activity. Following the
manufacturer's guidelines, each sample was analysed using a
rat caspase-3 ELISA kit from USCN Life Business Co, USA.

Histopathological analysis

Each group's cerebellar tissue sample was separated and
accurately preserved in 10% neutral formalin. Then, the tissue
was subjected to dehydration using a graduated ethanol
series, cleared with xylene, coated in paraffin wax, sliced into
5 wm sections with a microtome, and stained using
hematoxylin and eosin. The resulting sections were evaluated
by an expert in the field using a light microscope to identify
histopathological changes [21].

Statistical analysis

Data analysis was conducted using the GraphPad Prism
software (version 9.0, GraphPad Software, Inc.). The
findings are presented as mean values along with standard

Table 1. Effect of CM on Body weight and brain weight in rats exposed to MSG

deviation (mean+SD). To compare multiple groups, a
one-way analysis of variance (ANOVA) and a Tukey post
hoc test were conducted. The threshold for statistical
significance was established at p<0.05.

Results

Effect of CM on body weight and brain weight in MSG-
exposed rats

The result of the effect of CM on IBW, FBW, BWC, and
BrW in MSG-exposed rats is depicted in Table 1. The
IBW and FBW showed no significant (p>0.05) difference
across all the groups of rats. The BWC showed a notable
(p<0.05) decrease and an increase in rats from Groups B
and C when compared with control rats, a prominent
(p<0.05) increase in Groups C and D rats when compared
with Group B, and a significant (p<0.05) decrease in
Group D rats when compared with Group C rats.
Meanwhile, the BrW showed a significant (p<0.05)
decrease in Groups B and C rats compared with Group A
rats, and a significant (p<0.05) increase in Groups C and
D rats compared with Group B rats.

Group
Group A Group B Group C Group D
(Control) (MSG-exposed) (MSG-exposed+CM) (MSG-exposed-R)
IBW (g) 193.00£10.58 199.70+7.57 196.70+4.73 193.00+3.61
FBW (g) 216.70£11.93 210.30+7.64 230.30+5.51 215.00+4.58
BWC (g) 23.67+1.53 10.67 £1.53* 33.67 £1.53*" 22.00+1.00"*
BrW (g) 2.07+0.12 1..33+0.06* 1.63+0.06** 1.87+0.12°

Values are mean=SD of three replicates, where *p<0.05 vs control, p<0.05 vs MSG-exposed, and p<0.05 vs MSG-exposed+CM, and IBW, FBW, BWC,
and BrW were initial body weight, final body weight, body weight change, and brain weight, respectively.

Effect of CM on Brain MDA, CAT, and SOD in MSG-
exposed rats

The results of brain MDA, CAT, and SOD are expressed in
Figure 1. The results of brain MDA (Figure 1A) showed a
significant (p<0.05) increase in all other groups of rats
compared with the control rats, and a significant (p<0.05)
decrease in Groups C and D rats compared to the Group B rats.
However, the brain CAT result (Figure 1B) revealed a notable
(p<0.05) decrease in all other groups of rats compared to the
control rats, and a significant (p<0.05) increase in the rats of
Groups C and D when compared with Group B rats. Similarly,
the result of brain SOD (Figure 1C) revealed a significant
(p<0.05) decrease in Groups B and D rats when compared with
the control rats, and a significant (p<0.05) increase in Groups

C and D rats when compared with Group B rats.

Effect of CM on Brain GSH, GST, and GPx in MSG-
exposed rats

The results of brain Glutathione S-transferase (GST),
GPx, and GSH were expressed in Figure 2. The results of
brain GSH (Figure 2A) showed a significant (p<0.05)
decrease in Groups B and D rats compared with the
control rats, and a significant (p<0.05) increase in Groups
C and D rats compared with Group B rats. Similarly, the
result of brain GST and GPx (Figure 2 B and 2 C) revealed
a prominent (p<0.05) decrease in all other groups of rats
when compared with the control rats, and a significant
(p<0.05) increase in Group C and D rats when compared
with Group B rats.
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Figure 1. Effect of CM on Brain MDA, CAT, and SOD in MSG-exposed rats.
Values are mean+SD of three replicates, where *p<0.05 vs control, *p<0.05 vs MSG-exposed, and € p<0.05 vs MSG-exposed+CM.
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Figure 2. Effect of CM on Brain GSH, GST, and GPx in MSG-exposed rats.
Values are mean+SD of three replicates, where *p<0.05 vs control, ‘p<0.05 vs MSG-exposed, and p<0.05 vs MSG-exposed+CM.

Effect of CM on Brain MPO, NO, and CRP in MSG-exposed
rats

The results of Brain MPO, NO, and CRP were expressed
in Figure 3. The result of brain MPO and CRP (Figure 3A
and Figure 3C) demonstrated a significant (p<0.05) increase
in all other groups of rats when compared with the control

rats, and a significant (p<0.05) decrease in Groups C and
D rats when compared with the Group B rats. Similarly,
the result of testicular NO (Figure 3B) revealed a
significant (p<0.05) increase in Group B rats only when
compared with the control rats, and a significant (p<0.05)
decrease in Group C and D rats when compared with
Group B rats.
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Figure 3. Effect of CM on Brain MPO, NO, and CRP in MSG-exposed rats.
Values are mean+SD of three replicates, where *p<0.05 vs control, p<0.05 vs MSG-exposed, and ¥p<0.05 vs MSG-exposed+CM.

Effect of CM on Brain TNF-a, IL-1p, and NF-kB in MSG-
exposed rats

The findings for brain interleukin-1 (IL-1pB), tumor
necrosis factor-a, and nuclear factor-kappa B are expressed
in Figure 4. The results of brain IL-1p, TNF-a, and NF-kp
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(Figure 4 A, B, and C) all demonstrated a significant
(p<0.05) increase in all other groups of rats when
compared with the control rats, and a significant (p<0.05)
decrease in Groups C and D rats when compared with the
Group B rats.

200

Brain TNF-a (pg/mL)

&

e”cﬁ

-

Figure 4. Effect of CM on Brain TNF-a, IL-1p, and NF-kf in MSG-exposed rats.
Values are mean+SD of three replicates, where *p<0.05 vs control, “p<0.05 vs MSG-exposed, and p<0.05 vs MSG-exposed+CM.

Effect of CM on Brain AcHE and Dopamine in MSG-
exposed rats

The results for brain AcHE and dopamine are indicated in
Figure 5. The result of AcHE (Figure 5A) revealed a
significant (p<0.05) increase in Group B rats when
compared with the control rats, and a prominent (p<0.05)

48

decrease in Groups C and D rats when compared with
Group B rats. The result of dopamine (Figure 5B) showed
a significant (p<0.05) increase in Group B rats when
compared with the control rats, and a significant (p<0.05)
decrease in Group C rats when compared with Group B
rats.
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Figure 5. Effect of CM on Brain AcHE and Dopamine in MSG-exposed rats.
Values are mean+SD of three replicates, where *p<0.05 vs control, ‘p<0.05 vs MSG-exposed, and p<0.05 vs MSG-exposed+CM.

Effect of CM on Brain Caspase-3 in MSG-exposed rats cerebellum histomorphology made up of its classical

The results of brain caspase-3 are presented in Figure 6. layers: the Grey rn'at‘.[er consisting of the outer molecular
The results revealed a significant (p<0.05) increase in Group la.yer (OML?’ Purklnje layer .(PL)’ granular layer. (GL), all
B rats when compared with the control rats and a significant dispersed within the neuropil (NP) and the White matter
(p<0.05) decrease in Groups C and D rats when compared composed of neuronal axons and Glial cells. The blood
with Group B rats. capillaries appear normal and unremarkable. Features
Effect of CM on Brain Histology in MSG-exposed rats were consistent with normal cerebellar tissue.

Photomicrograph (Figure 7 [A, B, C, and D]) demonstrated
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Figure 6. Effect of CM on Brain Caspase-3 in MSG-exposed rats.
Values are mean=SD of three replicates, where *p<0.05 vs control and *p<0.05 vs MSG-exposed.
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A. MSG-exposed

C. MSG-exposed+CM
Figure 7. Photomicrograph of brain sections stained by H & E (Mgx400).

D. MSG-exposed-R

Where OML=Outer molecular layer, PL=Purkinje layer, GL=Granular layer, and NP=Neuropil.

Discussion

The MSG is a commonly used flavour enhancer in food
industries worldwide. However, recent neurobiological
research has raised significant concerns about its potential
neurotoxic effects [5,6]. The brain is particularly vulnerable
to MSG-induced damage due to its high metabolic rate and
limited antioxidant capacity [22]. While complete avoidance
of MSG may be impractical, there is a substantial need for an
effective strategy to address MSG's neurotoxic effects.
Therefore, the present study investigated CM's therapeutic
potential against MSG-induced pro-inflammation and
oxidative neurotoxicity in rats.

The results demonstrated that MSG exposure led to
substantial neurological alterations across multiple
biochemical and physiological parameters. Our findings
revealed that MSG-exposed rats had the least body weight
change (BWC), which does not support the controversy that
MSG causes obesity but is consistent with an earlier report
that MSG suppresses weight gain [23,24]. Moreover, it led to
a significant reduction in brain weight compared with
controls, suggesting that MSG can cause metabolic
disruptions and potential neuronal damage [25]. Notably,
CM administration mitigated these changes and showed
promising recovery in brain weight, suggesting a potential
neuroprotective effect.

Oral administration of Msg (6 g/kg bw) resulted in a
prominent increase in inflammatory markers, including IL-
1B, TNF-a, MPO, NO, CRP, and NF-kp in MSG-exposed
rats, indicating a robust inflammatory response in the brain
[26]. This inflammatory cascade is consistent with previous
studies highlighting glutamate's excitotoxic potential, which

can lead to neuronal damage through excessive receptor
stimulation and subsequent cellular stress [27].

Oxidative stress markers further substantiated the
neurotoxic effects of MSG. Its administration
significantly elevated brain oxidative stress markers,
particularly MDA levels, which indicate lipid
peroxidation, while depleting antioxidant enzymes (CAT,
SOD, GSH, GST, and GPx). These findings align with
previous studies demonstrating MSG's ability to induce
oxidative stress through excessive free radical generation
[28,29].

Acetylcholine and dopamine play crucial roles in
cognitive regulation. In the study, the neurotransmitter
profile was significantly altered in MSG-exposed rats.
There was a prominent increase in acetylcholinesterase
(AChE) activity and a significant decrease in dopamine
levels, suggesting neurotransmitter dysregulation. These
changes are consistent with previous studies linking MSG
consumption to cognitive impairment and neurochemical
imbalances [30].

Caspase-3, an executioner protease, functions critically in
the process of programmed cell death. The elevated
caspase-3 activity in MSG-exposed rats further indicates an
active apoptotic process, highlighting the potential for
neuronal death [31]. Histological examination did not show
significant alterations in cerebellar architecture with MSG
exposure. This lack of structural alteration may suggest that
the neurotoxic effects of MSG at the given dose and
duration manifest predominantly at the molecular level
before progressing to overt morphological damage, as
earlier noted by Mekkawy et al. (2020), who reported that
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MSG administration at 6 mg/g bw led to cerebellar histological
disruption after 60 days [32]. Similar observations have been
reported in earlier studies, which noted the time-dose
dependent nature of histological alterations, where
biochemical disruptions preceded histological changes,
signifying the sensitivity of biochemical assays in detecting
early toxic events [33,34]. This indicates a potential window
for early therapeutic intervention.

On the other hand, CM administration significantly
attenuated these adverse effects. Its administration
significantly abated the inflammatory response, reducing IL-
1B, tumour necrosis factor-a (TNF-a), and nuclear factor-
kappa B concentrations to near-control levels. This anti-
inflammatory effect can be attributed to CM's rich bioactive
compounds, including lactoferrins, immunoglobulins, and
antioxidant proteins [35]. The milk's ability to modulate
inflammatory pathways suggests a potential therapeutic
mechanism in mitigating neuroinflammation.

Furthermore, treatment with CM substantially decreased
the MDA levels and prominently restored the activities of
antioxidant enzymes in the brain. This study indicates the
antioxidant property of CM, which aligns with previous
studies [36,37]. CM supplementation effectively normalised
AChE activity and dopamine levels, suggesting its potential
to preserve neurotransmitter function and cognitive
processes. This effect may be attributed to CM's bioactive
peptides and proteins, which have been shown to modulate
neurotransmitter systems and support synaptic function [38].
The significant reduction in caspase-3 activity following CM
administration indicates its anti-apoptotic properties,
potentially through the regulation of death signalling
pathways [39]. The recovery group showed partial
improvement in various parameters compared with the
MSG-exposed group, indicating the brain's inherent capacity
for recovery. However, some markers, particularly
inflammatory markers and indicators of oxidative stress,
including neurotransmitter profiles, remained elevated
compared to the CM-treated group. This issue suggests that
natural recovery alone may be insufficient for the complete
resolution of MSG-induced neurotoxicity. This observation
aligns with previous studies on neural tissue recovery
following toxic insult [40]. By implication, this finding
suggests that CM can be a reliable and efficient treatment
strategy for MSG-induced neurotoxicity.

Conclusions

In conclusion, the study suggests that CM
supplementation can mitigate the neurotoxicity caused by
MSG through antioxidant, anti-inflammatory, and anti-
apoptotic mechanisms, potentially improving cognitive
functions and integrity. Therefore, CM may serve as a
therapeutic agent amenable to a diet that can neutralise
MSG's neurotoxic effect.
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